\(\int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx\) [1089]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 202 \[ \int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx=-\frac {\left (2 a^4-9 a^2 b^2+6 b^4\right ) \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a^4 \left (a^2-b^2\right )^{3/2} d}+\frac {3 b \text {arctanh}(\cos (c+d x))}{a^4 d}-\frac {\left (5 a^2-6 b^2\right ) \cot (c+d x)}{2 a^3 \left (a^2-b^2\right ) d}+\frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2}+\frac {\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \sin (c+d x))} \]

[Out]

-(2*a^4-9*a^2*b^2+6*b^4)*arctan((b+a*tan(1/2*d*x+1/2*c))/(a^2-b^2)^(1/2))/a^4/(a^2-b^2)^(3/2)/d+3*b*arctanh(co
s(d*x+c))/a^4/d-1/2*(5*a^2-6*b^2)*cot(d*x+c)/a^3/(a^2-b^2)/d+1/2*cot(d*x+c)/a/d/(a+b*sin(d*x+c))^2+1/2*(2*a^2-
3*b^2)*cot(d*x+c)/a^2/(a^2-b^2)/d/(a+b*sin(d*x+c))

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.381, Rules used = {2802, 3135, 3134, 3080, 3855, 2739, 632, 210} \[ \int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx=\frac {3 b \text {arctanh}(\cos (c+d x))}{a^4 d}+\frac {\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 d \left (a^2-b^2\right ) (a+b \sin (c+d x))}-\frac {\left (2 a^4-9 a^2 b^2+6 b^4\right ) \arctan \left (\frac {a \tan \left (\frac {1}{2} (c+d x)\right )+b}{\sqrt {a^2-b^2}}\right )}{a^4 d \left (a^2-b^2\right )^{3/2}}-\frac {\left (5 a^2-6 b^2\right ) \cot (c+d x)}{2 a^3 d \left (a^2-b^2\right )}+\frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2} \]

[In]

Int[Cot[c + d*x]^2/(a + b*Sin[c + d*x])^3,x]

[Out]

-(((2*a^4 - 9*a^2*b^2 + 6*b^4)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^4*(a^2 - b^2)^(3/2)*d)) +
(3*b*ArcTanh[Cos[c + d*x]])/(a^4*d) - ((5*a^2 - 6*b^2)*Cot[c + d*x])/(2*a^3*(a^2 - b^2)*d) + Cot[c + d*x]/(2*a
*d*(a + b*Sin[c + d*x])^2) + ((2*a^2 - 3*b^2)*Cot[c + d*x])/(2*a^2*(a^2 - b^2)*d*(a + b*Sin[c + d*x]))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2739

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[2*(e/d), Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 2802

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Int[(a + b*Sin[e + f*x
])^m*((1 - Sin[e + f*x]^2)/Sin[e + f*x]^2), x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0]

Rule 3080

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3134

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + D
ist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*
(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(
b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3135

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c
+ d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C
)*(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n +
3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && L
tQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\csc ^2(c+d x) \left (1-\sin ^2(c+d x)\right )}{(a+b \sin (c+d x))^3} \, dx \\ & = \frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2}+\frac {\int \frac {\csc ^2(c+d x) \left (3 \left (a^2-b^2\right )-2 \left (a^2-b^2\right ) \sin ^2(c+d x)\right )}{(a+b \sin (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )} \\ & = \frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2}+\frac {\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\int \frac {\csc ^2(c+d x) \left (5 a^4-11 a^2 b^2+6 b^4-a b \left (a^2-b^2\right ) \sin (c+d x)-\left (2 a^2-3 b^2\right ) \left (a^2-b^2\right ) \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )^2} \\ & = -\frac {\left (5 a^2-6 b^2\right ) \cot (c+d x)}{2 a^3 \left (a^2-b^2\right ) d}+\frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2}+\frac {\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\int \frac {\csc (c+d x) \left (-6 b \left (a^2-b^2\right )^2-a \left (2 a^4-5 a^2 b^2+3 b^4\right ) \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )^2} \\ & = -\frac {\left (5 a^2-6 b^2\right ) \cot (c+d x)}{2 a^3 \left (a^2-b^2\right ) d}+\frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2}+\frac {\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \sin (c+d x))}-\frac {(3 b) \int \csc (c+d x) \, dx}{a^4}-\frac {\left (2 a^4-9 a^2 b^2+6 b^4\right ) \int \frac {1}{a+b \sin (c+d x)} \, dx}{2 a^4 \left (a^2-b^2\right )} \\ & = \frac {3 b \text {arctanh}(\cos (c+d x))}{a^4 d}-\frac {\left (5 a^2-6 b^2\right ) \cot (c+d x)}{2 a^3 \left (a^2-b^2\right ) d}+\frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2}+\frac {\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \sin (c+d x))}-\frac {\left (2 a^4-9 a^2 b^2+6 b^4\right ) \text {Subst}\left (\int \frac {1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^4 \left (a^2-b^2\right ) d} \\ & = \frac {3 b \text {arctanh}(\cos (c+d x))}{a^4 d}-\frac {\left (5 a^2-6 b^2\right ) \cot (c+d x)}{2 a^3 \left (a^2-b^2\right ) d}+\frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2}+\frac {\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \sin (c+d x))}+\frac {\left (2 \left (2 a^4-9 a^2 b^2+6 b^4\right )\right ) \text {Subst}\left (\int \frac {1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^4 \left (a^2-b^2\right ) d} \\ & = -\frac {\left (2 a^4-9 a^2 b^2+6 b^4\right ) \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{a^4 \left (a^2-b^2\right )^{3/2} d}+\frac {3 b \text {arctanh}(\cos (c+d x))}{a^4 d}-\frac {\left (5 a^2-6 b^2\right ) \cot (c+d x)}{2 a^3 \left (a^2-b^2\right ) d}+\frac {\cot (c+d x)}{2 a d (a+b \sin (c+d x))^2}+\frac {\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 \left (a^2-b^2\right ) d (a+b \sin (c+d x))} \\ \end{align*}

Mathematica [A] (verified)

Time = 3.56 (sec) , antiderivative size = 195, normalized size of antiderivative = 0.97 \[ \int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx=\frac {-\frac {2 \left (2 a^4-9 a^2 b^2+6 b^4\right ) \arctan \left (\frac {b+a \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\left (a^2-b^2\right )^{3/2}}-a \cot \left (\frac {1}{2} (c+d x)\right )+6 b \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-6 b \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-\frac {a^2 b \cos (c+d x)}{(a+b \sin (c+d x))^2}+\frac {a b \left (-3 a^2+4 b^2\right ) \cos (c+d x)}{(a-b) (a+b) (a+b \sin (c+d x))}+a \tan \left (\frac {1}{2} (c+d x)\right )}{2 a^4 d} \]

[In]

Integrate[Cot[c + d*x]^2/(a + b*Sin[c + d*x])^3,x]

[Out]

((-2*(2*a^4 - 9*a^2*b^2 + 6*b^4)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^2 - b^2)^(3/2) - a*Cot[(
c + d*x)/2] + 6*b*Log[Cos[(c + d*x)/2]] - 6*b*Log[Sin[(c + d*x)/2]] - (a^2*b*Cos[c + d*x])/(a + b*Sin[c + d*x]
)^2 + (a*b*(-3*a^2 + 4*b^2)*Cos[c + d*x])/((a - b)*(a + b)*(a + b*Sin[c + d*x])) + a*Tan[(c + d*x)/2])/(2*a^4*
d)

Maple [A] (verified)

Time = 0.74 (sec) , antiderivative size = 299, normalized size of antiderivative = 1.48

method result size
derivativedivides \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{3}}-\frac {2 \left (\frac {\frac {a \,b^{2} \left (5 a^{2}-6 b^{2}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{2}-2 b^{2}}+\frac {b \left (4 a^{4}+3 a^{2} b^{2}-10 b^{4}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{2}-2 b^{2}}+\frac {a \,b^{2} \left (11 a^{2}-14 b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{2}-2 b^{2}}+\frac {a^{2} b \left (4 a^{2}-5 b^{2}\right )}{2 a^{2}-2 b^{2}}}{{\left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \right )}^{2}}+\frac {\left (2 a^{4}-9 a^{2} b^{2}+6 b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{2 \left (a^{2}-b^{2}\right )^{\frac {3}{2}}}\right )}{a^{4}}-\frac {1}{2 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {3 b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{4}}}{d}\) \(299\)
default \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{3}}-\frac {2 \left (\frac {\frac {a \,b^{2} \left (5 a^{2}-6 b^{2}\right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{2}-2 b^{2}}+\frac {b \left (4 a^{4}+3 a^{2} b^{2}-10 b^{4}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a^{2}-2 b^{2}}+\frac {a \,b^{2} \left (11 a^{2}-14 b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a^{2}-2 b^{2}}+\frac {a^{2} b \left (4 a^{2}-5 b^{2}\right )}{2 a^{2}-2 b^{2}}}{{\left (\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +2 b \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+a \right )}^{2}}+\frac {\left (2 a^{4}-9 a^{2} b^{2}+6 b^{4}\right ) \arctan \left (\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+2 b}{2 \sqrt {a^{2}-b^{2}}}\right )}{2 \left (a^{2}-b^{2}\right )^{\frac {3}{2}}}\right )}{a^{4}}-\frac {1}{2 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {3 b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{4}}}{d}\) \(299\)
risch \(\frac {i \left (-2 i a^{3} b \,{\mathrm e}^{5 i \left (d x +c \right )}+3 i a \,b^{3} {\mathrm e}^{5 i \left (d x +c \right )}+20 i a^{3} b \,{\mathrm e}^{3 i \left (d x +c \right )}-24 i a \,b^{3} {\mathrm e}^{3 i \left (d x +c \right )}+6 a^{4} {\mathrm e}^{4 i \left (d x +c \right )}-3 a^{2} b^{2} {\mathrm e}^{4 i \left (d x +c \right )}-6 b^{4} {\mathrm e}^{4 i \left (d x +c \right )}-18 i a^{3} b \,{\mathrm e}^{i \left (d x +c \right )}+21 i a \,b^{3} {\mathrm e}^{i \left (d x +c \right )}-14 a^{4} {\mathrm e}^{2 i \left (d x +c \right )}+6 b^{2} a^{2} {\mathrm e}^{2 i \left (d x +c \right )}+12 b^{4} {\mathrm e}^{2 i \left (d x +c \right )}+5 a^{2} b^{2}-6 b^{4}\right )}{\left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) \left (-i b \,{\mathrm e}^{2 i \left (d x +c \right )}+i b +2 a \,{\mathrm e}^{i \left (d x +c \right )}\right )^{2} \left (a^{2}-b^{2}\right ) a^{3} d}+\frac {3 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{a^{4} d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {9 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right ) b^{2}}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a -a^{2}+b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right ) b^{4}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{4}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right )}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {9 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right ) b^{2}}{2 \sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i \sqrt {-a^{2}+b^{2}}\, a +a^{2}-b^{2}}{b \sqrt {-a^{2}+b^{2}}}\right ) b^{4}}{\sqrt {-a^{2}+b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{4}}-\frac {3 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{a^{4} d}\) \(800\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)^2/(a+b*sin(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(1/2*tan(1/2*d*x+1/2*c)/a^3-2/a^4*((1/2*a*b^2*(5*a^2-6*b^2)/(a^2-b^2)*tan(1/2*d*x+1/2*c)^3+1/2*b*(4*a^4+3*
a^2*b^2-10*b^4)/(a^2-b^2)*tan(1/2*d*x+1/2*c)^2+1/2*a*b^2*(11*a^2-14*b^2)/(a^2-b^2)*tan(1/2*d*x+1/2*c)+1/2*a^2*
b*(4*a^2-5*b^2)/(a^2-b^2))/(tan(1/2*d*x+1/2*c)^2*a+2*b*tan(1/2*d*x+1/2*c)+a)^2+1/2*(2*a^4-9*a^2*b^2+6*b^4)/(a^
2-b^2)^(3/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2)))-1/2/a^3/tan(1/2*d*x+1/2*c)-3/a^4*b*ln(t
an(1/2*d*x+1/2*c)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 655 vs. \(2 (191) = 382\).

Time = 0.56 (sec) , antiderivative size = 1394, normalized size of antiderivative = 6.90 \[ \int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*(2*(5*a^5*b^2 - 11*a^3*b^4 + 6*a*b^6)*cos(d*x + c)^3 - 2*(8*a^6*b - 17*a^4*b^3 + 9*a^2*b^5)*cos(d*x + c)
*sin(d*x + c) + (4*a^5*b - 18*a^3*b^3 + 12*a*b^5 - 2*(2*a^5*b - 9*a^3*b^3 + 6*a*b^5)*cos(d*x + c)^2 + (2*a^6 -
 7*a^4*b^2 - 3*a^2*b^4 + 6*b^6 - (2*a^4*b^2 - 9*a^2*b^4 + 6*b^6)*cos(d*x + c)^2)*sin(d*x + c))*sqrt(-a^2 + b^2
)*log(((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 + 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(
d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) - 2*(2*a^7 + a^5*b^2 - 9*a^
3*b^4 + 6*a*b^6)*cos(d*x + c) + 6*(2*a^5*b^2 - 4*a^3*b^4 + 2*a*b^6 - 2*(a^5*b^2 - 2*a^3*b^4 + a*b^6)*cos(d*x +
 c)^2 + (a^6*b - a^4*b^3 - a^2*b^5 + b^7 - (a^4*b^3 - 2*a^2*b^5 + b^7)*cos(d*x + c)^2)*sin(d*x + c))*log(1/2*c
os(d*x + c) + 1/2) - 6*(2*a^5*b^2 - 4*a^3*b^4 + 2*a*b^6 - 2*(a^5*b^2 - 2*a^3*b^4 + a*b^6)*cos(d*x + c)^2 + (a^
6*b - a^4*b^3 - a^2*b^5 + b^7 - (a^4*b^3 - 2*a^2*b^5 + b^7)*cos(d*x + c)^2)*sin(d*x + c))*log(-1/2*cos(d*x + c
) + 1/2))/(2*(a^9*b - 2*a^7*b^3 + a^5*b^5)*d*cos(d*x + c)^2 - 2*(a^9*b - 2*a^7*b^3 + a^5*b^5)*d + ((a^8*b^2 -
2*a^6*b^4 + a^4*b^6)*d*cos(d*x + c)^2 - (a^10 - a^8*b^2 - a^6*b^4 + a^4*b^6)*d)*sin(d*x + c)), -1/2*((5*a^5*b^
2 - 11*a^3*b^4 + 6*a*b^6)*cos(d*x + c)^3 - (8*a^6*b - 17*a^4*b^3 + 9*a^2*b^5)*cos(d*x + c)*sin(d*x + c) + (4*a
^5*b - 18*a^3*b^3 + 12*a*b^5 - 2*(2*a^5*b - 9*a^3*b^3 + 6*a*b^5)*cos(d*x + c)^2 + (2*a^6 - 7*a^4*b^2 - 3*a^2*b
^4 + 6*b^6 - (2*a^4*b^2 - 9*a^2*b^4 + 6*b^6)*cos(d*x + c)^2)*sin(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x
+ c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c))) - (2*a^7 + a^5*b^2 - 9*a^3*b^4 + 6*a*b^6)*cos(d*x + c) + 3*(2*a^5*b^
2 - 4*a^3*b^4 + 2*a*b^6 - 2*(a^5*b^2 - 2*a^3*b^4 + a*b^6)*cos(d*x + c)^2 + (a^6*b - a^4*b^3 - a^2*b^5 + b^7 -
(a^4*b^3 - 2*a^2*b^5 + b^7)*cos(d*x + c)^2)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) - 3*(2*a^5*b^2 - 4*a^3*b
^4 + 2*a*b^6 - 2*(a^5*b^2 - 2*a^3*b^4 + a*b^6)*cos(d*x + c)^2 + (a^6*b - a^4*b^3 - a^2*b^5 + b^7 - (a^4*b^3 -
2*a^2*b^5 + b^7)*cos(d*x + c)^2)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2))/(2*(a^9*b - 2*a^7*b^3 + a^5*b^5)*
d*cos(d*x + c)^2 - 2*(a^9*b - 2*a^7*b^3 + a^5*b^5)*d + ((a^8*b^2 - 2*a^6*b^4 + a^4*b^6)*d*cos(d*x + c)^2 - (a^
10 - a^8*b^2 - a^6*b^4 + a^4*b^6)*d)*sin(d*x + c))]

Sympy [F]

\[ \int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx=\int \frac {\cos ^{2}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}}{\left (a + b \sin {\left (c + d x \right )}\right )^{3}}\, dx \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**2/(a+b*sin(d*x+c))**3,x)

[Out]

Integral(cos(c + d*x)**2*csc(c + d*x)**2/(a + b*sin(c + d*x))**3, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more de

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 339, normalized size of antiderivative = 1.68 \[ \int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx=-\frac {\frac {2 \, {\left (2 \, a^{4} - 9 \, a^{2} b^{2} + 6 \, b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (a\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + b}{\sqrt {a^{2} - b^{2}}}\right )\right )}}{{\left (a^{6} - a^{4} b^{2}\right )} \sqrt {a^{2} - b^{2}}} + \frac {2 \, {\left (5 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 6 \, a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 4 \, a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 3 \, a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 10 \, b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 11 \, a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 14 \, a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4 \, a^{4} b - 5 \, a^{2} b^{3}\right )}}{{\left (a^{6} - a^{4} b^{2}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + a\right )}^{2}} + \frac {6 \, b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a^{4}} - \frac {\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}} - \frac {6 \, b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - a}{a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}}{2 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2/(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-1/2*(2*(2*a^4 - 9*a^2*b^2 + 6*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c)
+ b)/sqrt(a^2 - b^2)))/((a^6 - a^4*b^2)*sqrt(a^2 - b^2)) + 2*(5*a^3*b^2*tan(1/2*d*x + 1/2*c)^3 - 6*a*b^4*tan(1
/2*d*x + 1/2*c)^3 + 4*a^4*b*tan(1/2*d*x + 1/2*c)^2 + 3*a^2*b^3*tan(1/2*d*x + 1/2*c)^2 - 10*b^5*tan(1/2*d*x + 1
/2*c)^2 + 11*a^3*b^2*tan(1/2*d*x + 1/2*c) - 14*a*b^4*tan(1/2*d*x + 1/2*c) + 4*a^4*b - 5*a^2*b^3)/((a^6 - a^4*b
^2)*(a*tan(1/2*d*x + 1/2*c)^2 + 2*b*tan(1/2*d*x + 1/2*c) + a)^2) + 6*b*log(abs(tan(1/2*d*x + 1/2*c)))/a^4 - ta
n(1/2*d*x + 1/2*c)/a^3 - (6*b*tan(1/2*d*x + 1/2*c) - a)/(a^4*tan(1/2*d*x + 1/2*c)))/d

Mupad [B] (verification not implemented)

Time = 11.18 (sec) , antiderivative size = 1762, normalized size of antiderivative = 8.72 \[ \int \frac {\cot ^2(c+d x)}{(a+b \sin (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

int(cos(c + d*x)^2/(sin(c + d*x)^2*(a + b*sin(c + d*x))^3),x)

[Out]

tan(c/2 + (d*x)/2)/(2*a^3*d) - (a^2 - (2*tan(c/2 + (d*x)/2)*(7*a*b^3 - 6*a^3*b))/(a^2 - b^2) + (tan(c/2 + (d*x
)/2)^4*(a^4 - 12*b^4 + 9*a^2*b^2))/(a^2 - b^2) + (2*tan(c/2 + (d*x)/2)^2*(a^4 - 16*b^4 + 12*a^2*b^2))/(a^2 - b
^2) + (2*tan(c/2 + (d*x)/2)^3*(6*a^4*b - 10*b^5 + a^2*b^3))/(a*(a^2 - b^2)))/(d*(2*a^5*tan(c/2 + (d*x)/2)^5 +
tan(c/2 + (d*x)/2)^3*(4*a^5 + 8*a^3*b^2) + 2*a^5*tan(c/2 + (d*x)/2) + 8*a^4*b*tan(c/2 + (d*x)/2)^2 + 8*a^4*b*t
an(c/2 + (d*x)/2)^4)) - (3*b*log(tan(c/2 + (d*x)/2)))/(a^4*d) - (atan((((-(a + b)^3*(a - b)^3)^(1/2)*(a^4 + 3*
b^4 - (9*a^2*b^2)/2)*((2*a^8 + 12*a^4*b^4 - 15*a^6*b^2)/(a^8 - a^6*b^2) + (tan(c/2 + (d*x)/2)*(10*a^8*b - 24*a
^2*b^7 + 60*a^4*b^5 - 46*a^6*b^3))/(a^9 + a^5*b^4 - 2*a^7*b^2) + (((2*a^10*b - 2*a^8*b^3)/(a^8 - a^6*b^2) - (t
an(c/2 + (d*x)/2)*(6*a^12 - 8*a^6*b^6 + 22*a^8*b^4 - 20*a^10*b^2))/(a^9 + a^5*b^4 - 2*a^7*b^2))*(-(a + b)^3*(a
 - b)^3)^(1/2)*(a^4 + 3*b^4 - (9*a^2*b^2)/2))/(a^10 - a^4*b^6 + 3*a^6*b^4 - 3*a^8*b^2))*1i)/(a^10 - a^4*b^6 +
3*a^6*b^4 - 3*a^8*b^2) + ((-(a + b)^3*(a - b)^3)^(1/2)*(a^4 + 3*b^4 - (9*a^2*b^2)/2)*((2*a^8 + 12*a^4*b^4 - 15
*a^6*b^2)/(a^8 - a^6*b^2) + (tan(c/2 + (d*x)/2)*(10*a^8*b - 24*a^2*b^7 + 60*a^4*b^5 - 46*a^6*b^3))/(a^9 + a^5*
b^4 - 2*a^7*b^2) - (((2*a^10*b - 2*a^8*b^3)/(a^8 - a^6*b^2) - (tan(c/2 + (d*x)/2)*(6*a^12 - 8*a^6*b^6 + 22*a^8
*b^4 - 20*a^10*b^2))/(a^9 + a^5*b^4 - 2*a^7*b^2))*(-(a + b)^3*(a - b)^3)^(1/2)*(a^4 + 3*b^4 - (9*a^2*b^2)/2))/
(a^10 - a^4*b^6 + 3*a^6*b^4 - 3*a^8*b^2))*1i)/(a^10 - a^4*b^6 + 3*a^6*b^4 - 3*a^8*b^2))/((2*(6*a^4*b + 18*b^5
- 27*a^2*b^3))/(a^8 - a^6*b^2) + (2*tan(c/2 + (d*x)/2)*(4*a^6 - 18*b^6 + 39*a^2*b^4 - 24*a^4*b^2))/(a^9 + a^5*
b^4 - 2*a^7*b^2) - ((-(a + b)^3*(a - b)^3)^(1/2)*(a^4 + 3*b^4 - (9*a^2*b^2)/2)*((2*a^8 + 12*a^4*b^4 - 15*a^6*b
^2)/(a^8 - a^6*b^2) + (tan(c/2 + (d*x)/2)*(10*a^8*b - 24*a^2*b^7 + 60*a^4*b^5 - 46*a^6*b^3))/(a^9 + a^5*b^4 -
2*a^7*b^2) + (((2*a^10*b - 2*a^8*b^3)/(a^8 - a^6*b^2) - (tan(c/2 + (d*x)/2)*(6*a^12 - 8*a^6*b^6 + 22*a^8*b^4 -
 20*a^10*b^2))/(a^9 + a^5*b^4 - 2*a^7*b^2))*(-(a + b)^3*(a - b)^3)^(1/2)*(a^4 + 3*b^4 - (9*a^2*b^2)/2))/(a^10
- a^4*b^6 + 3*a^6*b^4 - 3*a^8*b^2)))/(a^10 - a^4*b^6 + 3*a^6*b^4 - 3*a^8*b^2) + ((-(a + b)^3*(a - b)^3)^(1/2)*
(a^4 + 3*b^4 - (9*a^2*b^2)/2)*((2*a^8 + 12*a^4*b^4 - 15*a^6*b^2)/(a^8 - a^6*b^2) + (tan(c/2 + (d*x)/2)*(10*a^8
*b - 24*a^2*b^7 + 60*a^4*b^5 - 46*a^6*b^3))/(a^9 + a^5*b^4 - 2*a^7*b^2) - (((2*a^10*b - 2*a^8*b^3)/(a^8 - a^6*
b^2) - (tan(c/2 + (d*x)/2)*(6*a^12 - 8*a^6*b^6 + 22*a^8*b^4 - 20*a^10*b^2))/(a^9 + a^5*b^4 - 2*a^7*b^2))*(-(a
+ b)^3*(a - b)^3)^(1/2)*(a^4 + 3*b^4 - (9*a^2*b^2)/2))/(a^10 - a^4*b^6 + 3*a^6*b^4 - 3*a^8*b^2)))/(a^10 - a^4*
b^6 + 3*a^6*b^4 - 3*a^8*b^2)))*(-(a + b)^3*(a - b)^3)^(1/2)*(a^4 + 3*b^4 - (9*a^2*b^2)/2)*2i)/(d*(a^10 - a^4*b
^6 + 3*a^6*b^4 - 3*a^8*b^2))